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(A) Scratch Removal (Bertalmio-Sapiro-Caselles-Ballester,  SIGGRAPH, 2000)

Nature or you did it

Sir of photoshops:

Could you help me 
restore this precious 
photo in 1911?

Example of Inpainting
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(B) Crack Restoration (for Digital Museums) (Giakoumis-Pitas, 1998)

Aging/bad weather

Museum restoration

Example of Inpainting
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(C) Disocclusion (Nitzberg-Mumford-Shiota, 1993; Masnou-Morel, 1998)

Lay down a
marble ring

What is 
behind 
the marble
ring? Let me
guess …

Example of Inpainting
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(D) Text Removal (Bertalmio et al., 2000;  Chan-Shen, 2001)

adding

removal

Hello, sometimes
it happens. You add 
text on Monday, 
and you regret
doing it on Tues.
“How can I get rid
of the text? Jackie”

Example of Inpainting
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zoom in

zoom out

Image source: Test Image Databank, 
Computational Vision Group, Caltech.

Chan-Shen (SIAM J. Appl. Math., 2001), Tsai-Yezzi-Willsky (IEEE Trans. I. P.,  
2001), Ballester-Bertalmio-Caselles-Sapiro-Verdera (IEEE Trans. I. P., 2001) 

Zoom-in (super-resolution, magnification)
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Edge detection

Edge decoding.
Is it possible?

Image source: Test Image Databank, 
Computational Vision Group, Caltech.

Chan-Shen ( SIAM J. Appl. Math., 2001 )

David Marr once asked . . .

A primal sketch

Primal-Sketch Based Image Coding
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Error Concealment in Wireless Transmission

Random packet loss due to transmission

Error concealment

Chan-Shen [AMS Contemp. Math.,2002]
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Inpainting = Image Interpolation.
(initially circulated among museum restoration

artists; first introduced into I.P. by Saprio’s group [EECS, UMN, 1999] )

What makes inpainting difficult is the complexity of images:
– having a large dynamic range of scales; 
– intrinsically non-smooth due to edges and boundaries; 
– the missing domains can have complicated topology;

– direct classical interpolation tools perform less ideally:
polynomials   (Lagrange, Hermite, splines);
linear filtering (Fourier, wavelets, linear (heat) diffusion);
radially symmetric functions (as in spatial statistics).

given | \
0

Du Ω
Don  missing

Ω

What Is Inpainting
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Andrea Bertozzi et. al (2001) found the 
connection to the Navier-Stokes and 
vortex dynamics for incompressible 
flows: treating u as the stream function.

3rd Order PDE Inpainting: Transport

Bertalmio, Sapiro, Caselles and Ballester (2000) were the first to 
apply high-order PDEs to inpainting: smoothness transportation

If the solution does converge as t infinity, then L must remain 
constant along isophotes.

. becan  ),( smoothsmooth uLLuu
t

∆∇⋅∇=
∂
∂ ⊥

Transport L along the isophote

Inpainting
domain

We take a different approach
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Inpainting is an image restoration problem.

The universal approach for image restoration (denoising, 
deblurring, segmenting, e.t.c.) is the Bayesian framework. Or, in 
terms of machine and human vision, the Helmholtz principle.

Bayesian MAP (maximum a posteriori  probability) is to maximize

Prob(u | u0) = Prob (u0 | u)     x Prob (u )  (up to a constant)

The best   guess u
is based on both

the way the observation u0 is connected to u and,
the a priori popularity   of the guess itself.

Our Approach: Bayes/Helmholtz Principle
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Bayesian framework for image restoration:

– Prior model: Prob( u ) – What are images really?

– Data model: Prob(u0 | u) -- How is the observation u0

generated from the ideal image u. 

– Bayes’ Formula:

– Best guess = Maximum A Posteriori Probability:

).|(
)(
)()|( 0

0
0 uup

up
upuup =

).|(max 0uup

MAP: Maximum A Posteriori Probability
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Bayesian formulation: 

Energy (or variational) formulation:

They are formally bridged by Gibbs’ Law in Stat. Mechanics:

In this talk, we always use the energy/variational formulation.

).|(
)(

)()|( 0
0

0 uup
up
upuup =

).|(max 0uup

].|[][]|[ 00 uuEuEuuE +=

]|[min 0uuE

( )./Energy  expy Probabilit Tκ−∝

Mumford (1994), “The Bayesian rationale for energy functionals,” 

Bayesian Goes Variational
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For most inpainting problems, the data model is simple :

Assuming Gaussian noise, then

Therefore, an effective Bayesian/variational inpainting model crucially 
depends on a good (prior) image model E[u] ! 

given | \
0

Du Ω
Don  missing

Ω

 . noise] [| \original\
0

DD uKu ΩΩ ⊕∗=

∫Ω
−∗=

D
dxuuKuuE

\

200 .)(
2

]|[ λ

Data Model Is Simple. Prior Model Crucial
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Ways to acquire prior image models: 

Markov/Gibbs random fields (Geman-Geman, 1984; Blake-Zisserman, 
1987; Black-Rangarajan, 1994) based on the lattice model in 
Statistical Mechanics.
Filtering and entropy based learning (Zhu-Wu-Mumford, 1997, 1998).

Axiomatic approach for stochastic models (Mumford-Gidas, 2000).

Geometric models (in this talk): 
– A) Bounded variation (Rudin-Osher-Fatemi,1992,1994; Chan-Shen, 2000);

– B) The object-boundary model (Mumford-Shah, 1989);

– C) Functionalized elastica (Masnou-Morel, 1998, Chan-Kang-Shen, 2001);

– D) Mumford-Shah-Euler image (Esedoglu-Shen, 2001).

Geometric Image Prior Models

First get a taste from the Ising Spin Model
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Ising’s Lattice Spin Model (simplified ferromagnet):

Spin up: s = 1;   down: s = -1.

Ground state:  s==sign(H).

– 1-D model was solved by Ising (1925).
– 2-D model by Onsager (1944). 
– Analytic solutions to (>2)-D models are still unknown.

– First connected to vision/image analysis by Geman-Geman (Division 
Appl. Math., Brown U., 1984).

Ising’s Spin  Crystal

α β

γ∑∑ −−=
∝ α αβαβα αβ .][ sHssJsE

short range coupling external field



20

Inpainting Binary Images by Ising’s Model 

– Real images are generally not binary.

– Available image data are often polluted (by noise or blur).

– Geometry is not explicitly imposed. As a result, the regularity of 
the transition edges is generally not guaranteed. 

α β

γ δ

Suppose: boundary spins are known (locked).
What are the spins at  α, β, γ, δ ? Assuming
that there is no external field (i.e., H=0).

Solution for this example: sα =sγ =1; sβ =sδ = -1.

A step-edge is perfectly recovered ! However,

].spinsboundary  given|,,,[min δγβα ssssE

An  Example

Geometry ?  But How ?
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Functions with Bounded Variations (BV)

BV(Ω)={ u | integrable and with finite total variation TV[u]  }:

The Sobolev space W(1,1) is its subspace, for which

Generally, TV is a Radon measure.

Geometry of TV  (why good for vision/image modeling):
Coarea Formula (De Giorgi, 1961)

.sup][TV
1|| : smooth

dxuDuu f
ff

⋅∇== ∫ ∫Ω Ω≤

∫∫
∞

∞−

∞

∞−
=⇒Ω<= .)length(),(Per][

 smooth
λλλλ duduuE

u

.||][TV 22
21∫ ∫Ω Ω

+=∇= dxuudxuu xx

A collective way to impose geometry on all level-sets/edges !
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TV Inpainting: Model & Computation

,||
2

||],|[  min
\

200 ∫∫ ΩΩ
−+=

Du
dxuuDuDuuE λ

Chan-Shen (2000; SIAM J. Appl. Math., 62(3), 2001)

The TV inpainting model:

The associated formal Euler-Lagrange equation on Ω:

).(1)(  ),)((0 \
0 xxuux

u
u

DDD Ω⋅=−+












∇
∇

⋅∇= λλλ

given | \
0

Du Ω
Don  missing

Ω

total variation (TV) energy

least square (for Gaussian)

with Neumann adiabatic condition along the boundary of Ω.
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TV Inpainting: Existence

Existence Theorem for TV Inpainting:

There exists at least one optimal inpainting in the space BV(Ω).

Proof. Similar to Chambolle and Lions (1997). Applying

– Lower semicontinuity & weak compactness.
– Lebesgue dominated convergence theorem.

Chan-Kang-Shen [SIAP, 2002]

,||
2

||],|[  min
\

200 ∫∫ ΩΩ
−+=

Du
dxuuDuDuuE λ
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TV Inpainting: An Example for Disocclusion

Chan-Shen [SIAP, 2001]
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TV Inpainting: Uniqueness Is NOT Guaranteed

Unlike Rudin-Osher-Fatemi’s denoising model, the uniqueness of 
TV inpainting is generally not guaranteed. 

Non-uniqueness of the model, in our opinion, should be 
appreciated, instead of being cursed. It models the multiple
valleys of the Bayesian decision/cost function, which simulates the 
uncertainty of human decision making.

An example of uncertainty (vision foundation for non-uniqueness):

Inpainting domain D.

L

L

Chan-Kang-Shen [SIAP, 2002]
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Viscosity Approximation of TV Inpainting

).(1)(  ),)((0 \
0 xxuux

u
u

DDD Ω⋅=−+












∇
∇

⋅∇= λλλ
ε

Computationally, the degenerated 2nd order Euler-Lagrange eqn. is 
solved by viscosity approximation  (Osher-Sethian, Evans-Spruck), 

22|| εε += aa

In terms of the variational formulation, this is to minimize

.||
2

||],|[ 
\

20220 ∫∫ ΩΩ
−++=

D
dxuuDuDuuE λεε

Define v=εz-u (same for v0), xε=(x, z), Ωε= Ωε x(0,1) (s. f. Dε). Then, 

.||
2

||],|[],|[
\

2000 ∫∫ ΩΩ
−+==

εεε
εεε

λ
D

dxvvDvDvvEDuuE

(A  thin-film approximation)
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Inpainting of Clean Images & Minimal Surface Problem

Inpainting of clean (i.e. noise free) images (viscosity version):

The classical (non-parametric) minimal surface problem (Giusti):

 .  subject to   ,|| min 0
D

22

)(
uuDu

DDBVu
=+

∂∈ ∫ ε

in the sense of traceinpainting domain only

D

Fidelity of 
boundary data
is infinity: λ=inf

 .  subject to   ,1||);( min 
D

2

)(
ϕ=+=

∂∈ ∫ vDvDvA
DDBVv

Minimize the total surface area of the graph
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TV Inpainting of   Blurred Images

,||
2

||],,|[  min
\

200 ∫∫ ΩΩ
−∗+=

Du
dxuuKDuKDuuE λ

Chan-Shen (AMS Contemp. Math., 2002)

The TV inpainting model:

The associated formal Euler-Lagrange equation on Ω:

).(1)(  ),)((0 \
0 xxuuKxK

u
u

DDD
t

Ω⋅=−∗∗+












∇
∇

⋅∇= λλλ

DD nuKu \\
0 |)( | ΩΩ ⊕∗=

Don  missing
Ω

with Neumann adiabatic condition along the boundary of Ω.

Linear lowpass filter (blur)
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TV Inpainting for Noisy and Blurry Images

movie forever

Chan-Shen 
(AMS Contemporary Math., 2002)

Suppose K=Gt,
is the Gaussian kernel.
Then, the model gives
a good inverting of
heat diffusion. Without
the TV regularization,
backward diffusion is
notoriously ill-posed.
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TV Inpainting for the Error Concealment in Wireless Communication

movie once

A
Blurry
Image
With 
Lost

Packets

Chan-Shen 
(AMS Contemporary Math., 2002)
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Digital or Analog (i.e. Discrete vs. Continuous) ?

.A

u=φ  given on surrounding pixels

u(A)=a given on an interior pixel.

Suppose that a is highly credible,
i.e., no noise and no blurring.

A good inpainting scheme must take 
advantage of this exta information.

Theoretical crisis in the continuous (analog) interpolation theory:

∆u=0,   u=φ, along Γ;   u(A)=a,

which is ill-posed.
. A

Remedy ?   Fattening the inner pixel to an island.   Clumsy ?

Another approach: Go completely digital
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Continuous case:

Graph Laplacian (d  is the degree of a node):

which encodes all the information of the underlying graph.

.  ||
2
1][ gradient2

u
EudxuuE

D ∂
∂

−=∆ →∇= ∫

∑∑ ∝∝
+−=∆ →−=

αβ βααβα βα ,)(][ gradient2
2
1 uduuuuuE gg

Self-Contained Graph Spectral Theory

Chung-Yau (1994,1995)

α

βγ

δπ
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Continuous case:

Graph TV and graph curvature:

For weighted graphs, weights can be incorporated.

.curv  the,]TV[
||

||][TV gradient

u
u

u
udxuu

D
∂

∂
−=








∇
∇

•∇= →∇= ∫ κ

.
][TV

||][TV ggradient
g

α
αα α u

u
kuu

G ∂

∂
−= →∇= ∑ ∈

.)(|| 2∑ ∝
−=∇

αβ αβα uuu

Self-Contained Digital (Graph) TV Theory

Chan-Osher-Shen (2001)

.
||

1][TVg

α
α

α
α eueu

u
k e ∂

∂
∇∂

∂
∑=

∂

∂
−= ∝

α

βγ

δπ

eBeautiful 
formula:
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Digial TV Denoising of Data on Sierpinski Graph

Noisy data

Sharp transition is not smeared
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Chan and Shen (SIAP, 2001)

downsampling

TV inpaintingHarmonic inpainting

by factor 4

Sharp edges are successfully inpainted by TV, but blurred by Sobolev norms.

256 x 256

256 x 256256 x 256

128 x 128

Digital Zoom-in by (Digital) TV Inpainting

Coarse scale

Finer scale

(test image from Caltech Comp. Vision Lab)
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No extra data are 
needed. Just inpaint!

Chan and Shen (SIAP, 2001)

Marr’s p
rimal

sketch

Decoding Marr’s Primal-Sketch by Digital TV Inpainting

TV helps regularize the messy edge set

(test image from Caltech Comp. Vision Lab)
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What we perceive (or guess) depends on the aspect ratio.
So is TV inpainting!

TV Inpainting & Human Visual Perception. I.

(Kanisza)
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TV Inpainting & Human Visual Perception. II.

(Kanisza)
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Answer:  Yes! It can.

bf

D

ucu
clLlLu

=+≤≤−=
−−−−+=

εε
εε

5.5.
)(])21()21[()TV(

Can TV Inpainting Explain the Entangled Man?

To minimize the TV norm,   c = the body color = .5 + ε !

the body

the fence
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When l >> w

To fix the problem,
Chan and Shen (2001) 
proposed the CDD inpainting.

Human
perception

TV breaks it

l

w

TV & Human Visual Perception. III.  TV is Insufficient

(Kanisza, Nitzberg-Mumford, Chan-Shen)
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When l >> w Human
perception

TV breaks it

l

w

Connectivity Principle in Vision: TV is Insufficient

(Kanisza, Nitzberg-Mumford, Chan-Shen)

Artificial corners are 
created, where
curvatures are large.
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CDD Inpainting: Curcature Driven Diffusion

Chan and Shen introduced an inpainting mechanism based on 
CDD:  curvature driven diffusions. Information is “fluxed into” into 
the inpainting domain by diffusions:

where, F in the diffusivity coeff is to penalize large curvature. 

CDD generally encourages the connection 
of broken parts, and thus realizes the 

Connectivity Principle in vision. 

Chan and Shen (J. Visual Comm. Image Rep., 2001 )

),)((|)|,( 0uuxu
u

xFu
t e −+












∇

∇
⋅∇=

∂
∂ λκ

Large curvatures at artificial corners are penalized!
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CDD Inpainting: Connection Enforcement

Chan and Shen ( J. Visual Comm. Image Rep., 2001 )

Inpainting mask

Random initial guess Such weak edge is very nicely inpainted
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CDD Inpainting:  Who Stole My Company?

Chan and Shen ( J. Visual Comm. Image Rep., 2001 )

inpainting
mask

From the courtyard of Rolfe Hall, UCLA campus
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Combining  CDD  with  Sapiro’s Transport

Quasi-axiomatic approach to integrate the two microscopic 
inpainting mechanisms.

Axioms (Chan-Shen, 2002): 
– Morphological invariance
– Rotational invariance
– Forward (stable) diffusion
– Linear interpolation for pure transport

Then, there is only one class of 3rd order PDEs for inpainting:

Chan and Shen ( AMS Contemp. Math., 2002 )

.  ,  ,0
).  ),((

 
||ln 

t
u

t
u

nf
tanf

r
r

rr

∂
∇∂

∂
∂

=⋅∇=>

+⋅∇=

σκ
σσκ n

t

level sets

Our next model further explores the role of curvature
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The energy that controls the shape is given by the total 
squared curvature :

The equilibrium curves (local minima) are called elasticas.

Once upon a time, there was a guy named

He studied how a thin and torsion free rod bends under external 
forces at the two ends (1744):

Euler

γ
A B

∫ +=
γ

κγ .)(][ 2
2 dsbae



50

Elastica as Nonlinear-splines

G. Birkhoff and C. De Boor (1965) suggested to apply elasticas as 
new interpolation tools, or nonlinear splines, contrast to linear 
cubic splines in approximation theory. 

D. Mumford (1994) first introduced Euler’s elastica into computer 
vision, as a prior curve model, and expressed the solutions to the 
E-L equation in terms of elliptic functions:

Nitzberg, Mumford, and Shiota (1993) employed elasticas to 
connect large-scale occluded edges in vision modeling.

).()()(''2 3 s
b
ass κκκ =+
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Elasticas and A Drunk’s Walking Path: Statistical Meaning

The walking characteristics of the steps (fixed N steps):

step sizes (h1, h2, ..., hN) are i.i.d. of exponential type.

the uncertainty of the turn angle made at each step k is 
completely determined by and linearly proportional to the 
step size hk. The ratios are Gaussian i.i.d.’s with mean 0.

Then the distribution of the N-step polygonal walks      :

Mumford (1994); Chan-Kang-Shen (SIAP, 2002)

γ

Dow Jones

300

)).(exp(
Z
1)(exp

Z
1)(pdf 2

2

2
1

2 γκ
σ

γλγ
γ

eL −=




 −−=
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Sample Walking Paths of an Elastica Drunk

Samples of 20-step walks: 
For step sizes: Exponential with mean 1/10; 
For the turns :  Gaussian with mean 0 and std=3. 

Unlike Brownian motions,
the paths of an elastica drunk 
are more regular (smoother),
which is what computer vision
prefers for most contours in
our daily life: buildings, desks,
computers, etc. (Fractal 
coast lines are exceptions.) 

MATLAB Simulation

Chan-Kang-Shen (SIAP, 2002)
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Lifting a Curve Model to an Image Model

Using the level-sets of an image, we can “lift” a curve model to an 
image model (formally; theoretical study by Bellettini, et. al):

n
u
u

dsbad

dxubauE

u

D

r
⋅∇=








∇
∇

⋅∇=

+=

∇+=

∫∫
∫

=

||

)(

||)(][

:

21

0

2
2

κ

κλ

κ

λγ λ

Notice that for the mean curvature flow (Evans, IPAM notes):

,)
||

( 2 ji
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xx
xx

ijt uu
u
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u

∇
−= δ

∫∫ ∇−=∇
DD

dxudxu
dt
d .|||| 2κ
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Theorem (the associated PDE model).

The gradient descent flow is given by

where V is called the flux field , with proper boundary conditions.

. )( curvature,  theis  

,||
2

||)(],|[

2

\
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λκϕ

ban

dxuudxuDuuE
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λ

The Elastica Inpainting Model

Masnou-Morel (1998), Chan-Kang-Shen (SIAP, 2002)

n

t

level sets
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– Transport along the isophotes:

– Curvature driven diffusion (CDD) across the isophotes:

Conclusion:
Elastica inpainting unifies the earlier work of Bertalmio,
Sapiro, Caselles, and Ballester (2000) on transport based 
inpainting, and that of Chan and Shen (2001) on CDD
inpainting.

,|)|)('( 
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Chan-Kang-Shen (SIAP, 2002 )

Elastica Inpainting:   Also Tranport + CDD

n

t

level sets
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Effect 1:  as b/a increases, 
connection becomes smoother. 

.)( :elastica   sEuler' 2κκφ ba +=

Elastica Inpainting. I.  Smoother Completion
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Effect 2:  as b/a increases, 
long distance connection gets cheaper. 

Elastica Inpainting. II. Long Distance is Cheaper 

.)( :elastica   sEuler' 2κκφ ba +=

For more theoretical and computational (4th order nonlinear!) 
details,  please see Chan-Kang-Shen (SIAP, in press, 2002). 
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The Mumford-Shah (1989) image model was initially designed 
for the segmentation application:

),(length ||
2

][]|[],[ 2

\ms Γ+∇=Γ+Γ=Γ ∫ ΓΩ
αγ dxuEuEuE

Chan-Shen (SIAP, 2000),  Tsai-Yezzi-Willsky (2001), Esedoglu-Shen (EJAP, 2002)

Mumford-Shah Based Image Inpainting

Mumford-Shah based inpainting is to minimize:

].  , , ,|[],[],,|,[ 0
ms

0
ms KDuuEuEKDuuE Γ+Γ=Γ

Inpainting domain possible blurring

A  free boundary optimization problem.
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Mumford-Shah Inpainting:  Algorithm

.] , ,|[]|[],,|[ 00
ms constDuuEuEDuuE +Γ+Γ=Γ

For the current best guess of edge layout Γ,  find  u to minimize

equivalent to solving the elliptic equation on Ω\Γ:

.0))(( 0 =−+∆ uuxu eλγ
This updated guess of  u then guides the motion of Γ:

.)][( nRdt
dx r

Γ+= ακ
M. C. Motion Jump across Γ of the roughness measure

.)(|| 20
2

2
2 uuuR e −+∇= λγ

R-
R+

[We can then benefit from the level-set implementation by Chan-Vese.]
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edge Γ is approximated by a signature function z.

),(length ||
2

],[ 2

\ms Γ+∇=Γ ∫ ΓΩ
αγ dxuuE

.
4

)1(||||))((
2

],[
2
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


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 −
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ε
εαεγ

ε

Esedoglu-Shen (Europ. J. Appl. Math., 2002)

Γ

z=1

z=0

Mumford-Shah Inpainting via Γ-Convergence

The  Γ-convergence approximation of Ambrosio-Tortorelli (1990):

Esedoglu-Shen shows
that inpainting is the perfect
market for Γ-convergence
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The associated equilibrium PDEs are two coupled  elliptic
equations for  u and z, with Neuman boundary conditions:

,0
2

12)||(

,0)())((

2

20

=





 −

+∆−+∇

=∇⋅∇−−

ε
εαγ

γλ
zzzu

uzuuxD

given | \
0

Du Ω
Don  missing

Ω

Esedoglu-Shen (2002)

which can be solved numerically by any efficient elliptic solver.

Simple  Elliptic Implementation
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Γ

Esedoglu-Shen (2002)

Inpainting domain inpainted  u

inpainted  u the edge signature z

Applications: Disocclusion and Text Removal



64

Defect I:
Artificial corners

Defect II:
Fail to realize

the Connectivity
Principle, like TV.

Insufficiency of Mumford-Shah Inpainting
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Idea: change the straight-line curve model embedded in the 
Mumford-Shah image model to Euler’s elastica:

The Γ-convergence approximation (conjecture) of De Giorgi (1991):

∫
∫

Γ

ΓΩ

+Γ=Γ

Γ+∇=Γ

energy. elastica   the,)(length )(
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



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ε
ε
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β
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εαεγ

ε

Esedoglu-Shen (2002)

For the technical and computational details, please see Esedoglu-Shen.

Mumford-Shah-Euler Inpainting
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Features of Mumford-Shah-Euler Inpainting

Esedoglu-Shen (2002)
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Conclusion

Bayesian framework (or Helmholtz principle) is the foundation of our 
approach to inpainting/visual interpolation.

Pure statistical Bayesian approaches often have difficulty in faithfully 
representing and recovering image geometries.

Geometric image models explicitly express image geometries (e.g., 
the regularity of level sets and jump sets) in terms of energies.

Geometric measure and free boundary theories are useful in 
understanding the behavior of our models.

Our models are computationally realized by nonlinear geometric  

PDEs, the level-set method, and  Γ – convergence approximations.

Future efforts will be focused on: (a) integration (of different tools: 
wavelets/stochastic/PDEs);  (b) high-level vision (feature & pattern 
analysis);  (c) efficient algorithms (for the nonlinear high-order PDEs).
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That is all, folks…
Thank you for your patience!

Jackie
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